
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1205
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Key Generating Cryptosystem
Ms. JemimaJayaKiruba S, Dr. Savithri.V, Ms. Mary Ivy Deepa

Abstract— Key Generating Cryptosystem helps to secure the files by generating the public or master key(secret key) pair randomly after
account is created in the server by the owner in the Cloud database. Data owner will encrypt the data, public key and data index & then
upload it in the Cloud Server. Data owner Generates Aggregate Decryption Key (ADK) using the master-secret key, Data owner can share
the data to other users by sending its ADK through E-mail securely. Original Data can be downloaded by the user only after the Verification
of ADK. Data Owner will encrypt the file, public key and index into an image called Steganography to the cloud. Image is Splitted using
Merkle Hash Tree Algorithm in Cloud. User will send the Request to Data Owner; if Data Owner is interested to share the file then he will
share the ADK & Public Key to the User. After the user receive that mail then he/she will give their User Name, password, user Public Key,
Data Owner’s Public Key & Aggregate Decryption Key to the Cloud to download the encrypted file.

Index Terms— Key Generating Cryptosystem, Key Generation, Cryptosystem, Aggregate Decryption Key, Steganography, Key Generation
in Cloud, ADK, Securing the files, Encryption.

—————————— ——————————

1 INTRODUCTION
In this paper, concrete materials are taken as three-phase compo-

sites consisting of mortar matrix, aggregate and bond between

matrix and aggregate. Aggregate structures are randomly generat-

ed according to the concrete mix. Mesh of finite element is pro-

jected on a generated aggregate structure of concrete and differ-

ent material properties are assigned to the respective elements

according to element location in three phases. A failure

criterion combining fracture toughness and strength is proposed.

Whole processes of single edge notch specimen are simulated

from damage to fracture under tension-displacement control con-

dition using nonlinear finite element method. A new research

method is presented for investigating fracture mechanism and

developing computing strength of concrete[1]. A digital comput-

er is generally believed to be an afficient universal computing

device; that is, it is believed able to simulate any physical compu-

ting device with an increase in computation time by at most a

polynomial factor. This may not be true when quantum mechan-

ics is taken into consideration. This paper considers factoring

integers and finding discrete logarithms, two problems which are

 generally thought to be hard on a classical computer nd which

have been used as the basis of several prposed cryptosystem. Ef-

ficient randomized algorithms are given for these two problems

on a hypothetical quantum computer. These algorithms take a

number of steps polynomial in the input size, e.g., the number of

digits of the integer to be factored[2].

2 METHODS & METHODOLOGIES

2.1 Proposed System

In this proposed system, Data owner will generate the public

or master-secret key randomly after he creates account in the

server. Data owner encrypts the data, public key and data in-

dex & then upload it in the Cloud Server. Data owner Gener-

ates Aggregate Decryption Key (ADK) using its master-secret

key, Data owner can share the data to other Users by sending

it’s ADK. Original Data, Index and the Public key is down-

loaded only after Verification of ADK. In the modification pro-

cess, Data Owner will encrypt the file, public key and index

into an image called Steganography to cloud. Image is Splitted

using Merkle Hash Tree Algorithm in Cloud.. Data User will

Search in the cloud by Specifying the Keyword, Cloud will

retrieve the Best Results based on the Keywords provided by

the data user. Data User’s request is forwarded to the Data

owner. If data Owner is interested to share that Data to the

————————————————
• Author Ms. JemimaJayaKiruba S is currently pursuing masters degree

program in computer science & technology in Women’s Christian College,
Chennai,TamilNadu, India, PH-9710820684. E-mail: jemi-
ma.18kiruba@gmail.com

• Co-Author Dr.Savithri.V is currently working as Assistant Professor in
computer science & technology department in Women’s Christian College,
Chenna India,, PH-9841958932. E-mail:dr.savithri.v@gmail.com

• Co-Author Ms. Mary Ivy Deepa is currently working as Assistant Profes-
sor in computer science & technology department in Women’s Christian
College, Chenna, TamilNadu, India, PH-9444077051. E-
mail:maryivydeepa@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1206
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

data user, then forwards the ADK along with the Public Key to

the data User. Data User will be giving his User Name, pass-

word, his Public Key along with the Data Owner’s ADK &

Public Key to the Cloud Server. Cloud Server will verify all

those Credentials and then finally Shares the Encrypted Data.

Now User has to give the Decryption Key to Extract the Origi-

nal data. Advantages of proposed system are

1. It provide high security

2. Preserving data integrity and confidentiality

3. Data is Stored Securely in Cloud Server.

2.2 Cloud Server

Cloud servers are constructed with the files and the index in-

formation are maintained in the main cloud server. The data

are added in each cloud servers, and network construction is

made with the entire data index present in each cloud server.

Query is given to the main cloud server, so that the main cloud

server will verify the index information present in it & divert

the query to the corresponding cloud servers.

2.3 Data User / Owner Registration

In this module we are going to create an User application by

which the User is allowed to access the data from the Server of

the Cloud Service Provider. Here first the User wants to create

an account and then only they are allowed to access the Net-

work. Once the User creates an account, they are to login into

their account and request the Job from the Cloud Service Pro-

vider. Based on the User’s request, the Cloud Service Provider

will process the User requested Job and respond to them. All

the User details will be stored in the Database of the Cloud

Service Provider. In this Project, we will design the User Inter-

face Frame to Communicate with the Cloud Server through

Network Coding using the programming Languages like Java/

.Net. By sending the request to Cloud Server Provider, the

User can access the requested data if they authenticated by the

Cloud Service Provider.

2.4 Data Upload With Index Management

In this module while data owner uploading the file it is en-

crypted with AES algorithm and provided with public key.

The index value means every files has to searched by using

index value so while uploading the cloud owner has enter few

index value for every files and then using the public key. So

while uploading the file the cloud give th e index value and

public key. And this index value, public key and files are en-

crypted by the AES algorithm and stored in the cloud server.

And every upload of file a link will sent to the cloud owner it

will be sent through the email

2.5 Steganography

Steganography is the art or practice of concealing a message,

image, or file within another message, image, or file. General-

ly, the hidden messages will appear to be (or be part of) some-

thing else: images, articles, shopping lists, or some other cover

text. In this module we encrypt the files, index value using the

public key. The encrypt data is hidden in the image after it

will be stored in the cloud server.

2.6 ADK Generation

In this module we are going to generate the ADK aggregate

decryption key .This key will be generated every files upload-

ed by the cloud user .But this key is generated after validating

the cloud owner by giving the master key every cloud owner

has a master while they registered in the cloud. so using the

master key the cloud owner generate the ADK key for every

uploaded files.

2.7 User Authentication & Data Sharing

In this module we designed to the cloud user to interact with

the cloud owner .so in this module the user will search the

files that is he/she can search the files but he cannot see the file

because they need to get permission from the cloud owner

even thou the cloud user has is username, password and pub-

lic key, he/she as get the permission from the cloud owner

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1207
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

then the cloud owner see the cloud user request and we send

the ADK key and is private key to the cloud user through the

email after retrieving the keys from the owner through the

email the cloud user has to enter to see the files which he has

make request.

2.8 Decrypt Phase

Decrypt(Primary key, Cipher text, Private key). The decryption

algorithm takes as input the public parameters Primary key, a

cipher text, which contains an access policy, and a private key,

which is a private key for a set of attributes. If the set of attrib-

utes satisfies the access structure then the algorithm will de-

crypt the ciphertext and return a message.

Fig. 1. Overview of Proposed System

3. CODING

log4j.rootLogger=INFO, file

log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=D\:\\log.log

log4j.appender.file.MaxFileSize=1MB

log4j.appender.file.MaxBackupIndex=1

log4j.appender.file.layout=org.apache.log4j.PatternLayout

log4j.appender.file.layout.ConversionPattern=%d{yyyy-

MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n

public static void main(String[] args)

{

 LoggerUtil log = new LoggerUtil();

 try

{

 // TODO code application logic here

 log.addLog("Program started");

 AuthenticateUser.main();

 new UserLogin().main();

 }

catch (Exception ex)

{

 log.addLog(ex.getLocalizedMessage()); Log-

ger.getLogger(Steganography.class.getName()).log(

Level.SEVERE, null, ex);

}

public class HibernateUtil

{

 private static final SessionFactory sessionFactory;

 private static LoggerUtil log = new LoggerUtil();

 static

 {

 try {

 // Create the SessionFactory from standard (hiber-

nate.cfg.xml)

 // config file.

 sessionFactory = new Configura-

tion().configure("/hibernatecfg/hibernate.cfg.xml").bui

ldSessionFactory();

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1208
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

}

catch (HibernateException ex)

{

 log.addLog("Hibernate exceptio=>"+ex);

 System.err.println("Initial SessionFactory creation

failed." + ex);

 throw new ExceptionInInitializerError(ex);

}

4. CONCLUSION

To protect user’s data privacy is a central question of cloud stor-

age. With more mathematical tools, cryptographic schemes are

getting more versatile and often involve multiple keys for a single

application. This proposed system consider how to “compress”

secret keys in public-key cryptosystems which support delegation

of secret keys for different ciphertext classes in cloud storage. No

matter which one among the power set of classes, the delegate

can always get an aggregate key of constant size. Our approach is

more flexible than hierarchical key assignment which can only

save spaces if all key-holders share a similar set of privileges. A

limitation in our work is the predefined bound of the number of

maximum ciphertext classes. In cloud storage, the number of

ciphertexts usually grows rapidly. So we have to reserve enough

ciphertext classes for the future extension. Otherwise, we need to

expand the public-key. Although the parameter can be download-

ed with ciphertexts, it would be better if its size is independent of

the maximum number of ciphertext classes. On the other hand,

when one

carries the delegated keys around in a mobile device without us-

ing special trusted hardware, the key is prompt to leakage, de-

signing a leakage-resilient cryptosystem, yet allows efficient and

flexible key delegation is also an interesting direction.

ACKNOWLEDGMENT
The authors wish to thank I extend my deepest grati-

tude to our Principal Dr. Ridling Margaret Waller, our Dean
Mrs. Margaret Alexander, our Head of Department Mrs. Mary
Ivy Deepa, Dr.Savithri & my family. This work was supported
in part by a grant from Women’s Christian College, Chennai,
TamilNadu, India.

REFERENCES

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu,
“SPICE – Simple Privacy-Preserving Identity-
Management for Cloud Environment,”

[2] L. Hardesty, “Secure Computers Aren’t so Secure”.
MIT press.

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy- Preserving Public Auditing for Secure
Cloud Storage,”

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing
Shared Data on the Cloud via Security-Mediator,”.

[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.H.
Deng, “Dynamic Secure Cloud Storage with Prove-
nance,” Cryptography and Security,

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Ag-
gregate and Verifiably Encrypted Signatures from Bi-
linear Maps,”

[7] M.J. Atallah, M. Blanton, N. Fazio, and K.B. Frikken,
“Dynamic and Efficient Key Management for Access
Hierarchies,”

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Pa-
tient Controlled Encryption: Ensuring Privacy of Elec-
tronic Medical Records,”

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity
Single-Key Decryption without Random Oracles,”

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “At-
tribute-Based Encryption for Fine-Grained Access
Control of Encrypted Data,”

[11] S.G. Akl and P.D. Taylor, “Cryptographic Solution to
a Problem of Access Control in a Hierarchy,”

[12] G.C. Chick and S.E. Tavares, “Flexible Access Control
with Master Keys,”

[13] W.-G. Tzeng, “A Time-Bound Cryptographic Key As-
signment Scheme for Access Control in a Hierarchy,”

[14] G. Ateniese, A.D. Santis, A.L. Ferrara, and B. Masucci,
“Provably- Secure Time-Bound Hierarchical Key As-
signment Schemes,”

[15] R.S. Sandhu, “Cryptographic Implementation of a
Tree Hierarchy for Access Control,”

IJSER

http://www.ijser.org/

	1 Introduction
	Acknowledgment

